

Copyright © 2009 Websydian A/S. All rights reserved

Web Service Tutorial

Calling a web service

Revision date 14 August 2009

 Table of Contents

Web Service Tutorial 1

Table of Contents

Table of Contents ... 1

Overview ... 2

Document description ... 2

Preparations ... 2

Creating a local model .. 2

Installing TransacXML tool .. 3

Importing document definitions ... 4

Explanation ... 4

Import the document definitions .. 4

Create a web service entity ... 6

Create a WebServiceCaller function ... 6

Create a test function .. 8

Generate and build ... 9

Library Objects .. 9

Application .. 10

Test the function ... 11

Problem solving .. 11

 Overview

Calling a web service 2

Overview

This tutorial will show you how to create the necessary definitions and programs for
calling a SOAP-based web service.

The web service is hosted at the Websydian site. This means that to test the
application, you will have to have access to the Internet.

For each call of a web service, three separate steps are performed:

1. An XML document containing the request data are created

2. An http request containing the request document is sent to the service provider
– and a response containing a response document is received.

3. The response document is read and the data contained in the document is
retrieved.

To be able to create programs that perform these three steps, you have to first define
the structure of the request and the response document in Plex.

The tutorial will show you how to use a WSDL file describing a specific web service to
generate the necessary definitions of the XML documents and will show how you make
the programs necessary for calling the web service.

Document description
This example document shows the structure of the request document that will be
created and sent to the web service:

This is a simple document that just contains the first and last name of a person.

This example document shows the structure of the response document that will be
returned by the service and read by the program calling the service:

The one thing in the two documents that might be a bit confusing is:

xmlns:p1="http://www.websydian.com/services/greet".

This is a namespace declaration, which just specifies that everything that is prefixed
with p1 belong to the namespace:

“http://www.websydian.com/services/greet".

Preparations

Creating a local model
Before you are able to run this tutorial, you have to create a local Plex model that has
the Websydian web service pattern library (WSYSOAP) as a library model.

 Preparations

Web Service Tutorial 3

If you want to use an existing model, you can of course do so. Just make sure to check
the configuration of the model (see below).

Create a Plex group model that has WSYSOAP as a library model.

Create a Plex local model based on the group model.

Specify the following configuration:

Model Variant Version Level

ACTIVE Base Latest version Latest Level

DATE Windows Client Latest version Latest Level

FIELDS Base Latest version Latest Level

FUNDATI Base Latest version Latest Level

JAVAAPI Base Latest version Latest Level

OBJECTS Base Latest version Latest Level

SDSTRING WinC v.6.1 v.6.1

STORAGE Base Latest version Latest Level

UIBASIC Base Latest version Latest Level

UISTYLE Base Latest version Latest Level

VALIDATE Base Latest version Latest Level

WINAPI Base Latest version Latest Level

WSYBASE DWA – Windows v.6.1 v.6.1

WSYDOM MSXML v.6.1 v.6.1

WSYHTTP Windows v.6.1 v.6.1

WSYSOAP Base v.6.1 v.6.1

WSYXML Base v.6.1 v.6.1

Installing TransacXML tool
To be able to use the TransacXML import tool to create the definitions of the request
and the response documents, you have to install the tool.

Download the latest version of the import tool from the download application at:
www.websydian.com

If you are not already a registered user, you will have to register to access the
download application.

Run the downloaded exe file to install the tool.

http://www.websydianexpress.com/

 Importing document definitions

Calling a web service 4

Importing document definitions

Explanation
The first step is to define the structure of the request and the response document in the
Plex local model.

In most cases, the service provider determines the structure of the response and
request documents.

The description of the request and response documents can be in many forms, but as
the use of web services has evolved, the WSDL (Web Service Description Language)
standard has become the most common way to describe services.

The web service used by this tutorial also provides a WSDL; this WSDL can be found
here:

http://www.websydian.com/services/wsdl/greet.wsdl

Websydian provides an import tool that makes it possible to import the structure of the
request and response documents described in WSDL files.

The installation of this tool is described above (in the preparations section).

The installation will have created a shortcut to the import tool in the start menu under
Websydian/TransacXMLImporters.

Import the document definitions

Run the installed wsdl import program.

Enter the location of the wsdl file:

http://www.websydian.com/services/wsdl/greet.wsdl

Press “Process” to parse the WSDL.

http://www.websydian.com/services/wsdl/greet.wsdl
http://www.websydian.com/services/wsdl/webservicetutorial.wsdl

 Importing document definitions

Web Service Tutorial 5

The tree structure shows a representation of the content of the WSDL file. The WSDL
file defines one operation (greet) that receives an input message (Request) and returns
an output message (Response).

The import tool is used to import the document definitions for the request and response
documents. You start the import of a message by double-clicking on the message node
on the structure.

Double-click on the Request message.

This launches the schema import panel for the schema that describes the request
message.

This panel provides you with options to override different parts of the import behavior.
For the tutorial, just leave everything as it is.

Press Generate to create a Plex XML import file.

Open the Plex local model and select Tools Import XML Import...

Clear the input field and press Browse.

Find the generated Plex import file. This file is named pleximport.xml.

Press OK.

Plex performs the import of the definitions.

You can disregard all warning messages created by the Plex XML import. If any error
messages are created, they will have to be investigated.

Refresh the Object Browser. Choose to view entities.

The definitions for the request document have been generated and placed as an
unscoped entity named request.

The Request entity corresponds to the top element Request in the request document,
while the two fields Request.Fields.firstName and Request.Fields.lastName correspond
to the fields scoped by the Request element.

In the model, you can find the namespace information in the two source codes
Namespace and prefix that is scoped by the Request entity.

To better understand the definitions, you might want to compare the definitions in the
Plex model with the example request document shown in the Overview/Document
definitions section of the document.

Close the Schema import panel.

Double click the response document in the tree structure.

On the Schema Import panel press Generate to generate the Plex import file.

Open the Plex local model and select Tools Import XML Import...

 Create a web service entity

Calling a web service 6

Clear the input field and press Browse.

Find the generated Plex import file. This file is named pleximport.xml.

Press OK.

Refresh the object browser.

The response document has been imported – the definitions have been placed as an
unscoped entity Response.

Before you can use the functions scoped by the two entities, you need to make all the
scoped objects real.

Make all objects scoped by the Request and Response entities real.

Create a web service entity

To be able to call a SOAP based web service, you need a number of service functions
and definitions for the XML envelope that will be wrapped around the request and
response documents.

You get these by creating an entity that inherits from the abstract HttpSoap entity found
in the WSYSOAP model.

This creates all the definitions necessary for creating both the subscriber and the
provider role. In this tutorial, only the subscriber part is created so the function handling
the requests for a provider is set to implement no.

Create the triples:

Source object Verb Target object

Subscriber is a ENT WSYSOAP/HttpSoap

Subscriber.Services.SoapProcessor implement SYS No

Make the Subscriber entity and all the scoped objects real.

Create a WebServiceCaller function

The abstract WebServiceCaller function supports the three tasks that must be
performed when calling a web service;

1. Creating the request document.
2. Making an http request to the provider
3. Reading the response document

You must implement an instance of this function. The data required to generate the
request document will be delivered as input parameters and the data returned in the
response document will be returned as output parameters.

Create the following triples:

Source object Verb Target object

TutorialWebServiceCall is a FNC WSYSOAP/WebServiceCaller

 Create a WebServiceCaller function

Web Service Tutorial 7

Source object Verb Target object

input view Request.Data

output view Response.Data

local FLD WSYBASE/ServiceURL

local FLD WSYSOAP/SOAPAction

message MSG URL

message MSG SOAPAction

When calling the web service, you must specify the URL of the service and the SOAP
Action that specifies which operation to call (in most cases a service provides several
possible operations using the same URL).

You can find the information about the URL and the SOAPAction in the WSDL file.

The URL is found as the value of the soap:address location attribute in the service
section of the WSDL:

The SOAP Action is found as the soapAction attribute for the greet operation in the
binding section of the WSDL:

Specify: http://www.websydian.com/services/greet as the literal value of the
message TutorialWebServiceCall.URL.

Specify: http://www.websydian.com/services/greet as the literal of the message
TutorialWebServiceCall.SOAPAction.

Open the action diagram for TutorialWebServiceCall.

Add the specified code to the action diagram:

Post Point: Create request document:

Call Request.InsertRow

Map with:

Variable Input:

RequestDocument<ObjectStoreReference>

 Create a test function

Calling a web service 8

RequestDocument<ObjectDocument>

RequestDocument<ObjectDocument>

Variable Data:

Variable Input

Post Point Call soap generator:

Format Message Message: TutorialWebServiceCaller.SOAPAction,

Local<SOAPAction>

Format Message Message: TutorialWebServiceCaller.URL,

Local<ServiceURL>

Call Subscriber.Services.CallSoapGenerator

Map with:

Variable InputDocument:

RequestDocument<ObjectDocument>

RequestDocument<ObjectStoreReference>

Variable OutputDocument:

ResponseDocument<ObjectDocument>

ResponseDocument<ObjectStoreReference>

Variable Connection:

Local<SOAPAction>

<charset.utf-8>

Local<ServiceURL>

Post Point Read response document:

Call Response.GetFirstOccurrence

Variable Input:

ResponseDocument<ObjectStoreReference>

ResponseDocument<ObjectDocument>

Variable Parent:

<ParentElement.NULL>

If Environment<*Returned status> == <Returned status.*Successful>

 Call Response.SingleFetch

 Map with:

 Variable Input:

 ResponseDocument<ObjectStoreReference>

 Response.GetFirstOccurrence/Output<ObjectNode>

If Environment<*Returned status> == <Returned status.*Successful>

 Set Output/Output = Response.SingleFetch/Data

Else

+For Each Field Output/Output

++Set Empty

Create a test function

After performing the steps described above, you have:

 Defined the structure of both documents.

 Defined a soap entity that provides you with the functionality for calling the web
service.

 Made a function that creates the request document, calls the service and reads
the response.

In a normal situation, you would call this function somewhere in your own application –
for the tutorial, you will create a small panel function to perform the call.

 Generate and build

Web Service Tutorial 9

As the fields defined in the XML documents have no length, it is a good idea to define
lengths for the fields to enforce a normal behavior on the panel.

Specify the following triples:

Source object Verb Target object

Request.Fields.firstName length SYS 25

Request.Fields.lastName length SYS 25

Response.Fields.greeting length SYS 75

To define the test function, specify the following triples:

Source object Verb Target object

TestSubscriber is a FNC UIBASIC/UIBasicShell

TestSubscriber.Panel displays view VW

...for

Request.Data

Request

displays view VW

...for

Response.Data

Response

Region VAR Request

Region VAR Response

Using the panel editor, add a button called Test on the panel and assign an event
called Test to the “Pressed” physical event of the button.

Specify the following code in the action diagram of the TestSubscriber function:

Post Point Events:

Event Event: Test

 Get Request

 Call TutorialWebServiceCaller

 Map with:

Variable Input:

Variable Request

 Set Response = TutorialWebServiceCaller/Output

 Put Response

Generate and build

Library Objects

Open the Generate and build settings – System definitions for the local PC.

Select 32 bit C++ build

Check the Use pre-built libraries checkbox.

 Generate and build

Calling a web service 10

Specify the following libraries:

Websyd.lib, WsydXml11.lib, WsydXml11_dll.lib

These three files are found in the Development folder of your Websydian installation
(use the ones for your Plex version).

wininet.lib, ws2_32.lib.

These two lib files are delivered with Visual Studio – you should not specify a path,
the compiler knows where to find them.

For Header Directories, specify the “include” folder found under the Development
folder of your Websydian installation.

Drag the following subject areas from the object browser to the Generate and Build
window. Generate and build all the objects in the subject areas in one build.

WSYDOM/DOMObjectsToGenerateAndBuild

SDSTRING/SDStringObjectsToGenerateAndBuild

WSYHTTP/HttpClientObjects

WSYBASE/DWA_Win_ObjectsToGenerateAndBuild

WSYSOAP/SOAPObjectsToGenerateAndBuild

Application

Generate and build:

All objects scoped by the Subscriber entity

All objects scoped by the Request entity.

All objects scoped by the Response entity.

The function TutorialWebServiceCall.

The TestSubscriber function.

Create an exe for the TestSubscriber function

Enter the following section in the TestSubscriber.ini file:

[TransacXML]
TEMPORARY_FILES=c:\temp\SoapGenerator\

DELETE_TEMPORARY_FILES=N

Create the temporary folder c:\temp\SoapGenerator – or specify an existing folder
instead.

Copy the file WsydXml11.dll to your release library.

This file is found in the Deployment\Windows folder of your Websydian installation
(use the one for your Plex version).

Specifying DELETE_TEMPORARY_FILES=N means that the temporary files will not
be deleted. This means you can see the content of the temporary files and use it to
search for errors.

 Test the function

Web Service Tutorial 11

Test the function

Execute the TestSubscriber.exe function.

Enter your first and last name – now the greeting field should be shown.

Find the folder you specified for the TEMPORARY_FILES setting in the ini file. This
should now contain two files – one containing the request document and one
containing the response document.

Problem solving

Check folder for temporary file

If it does not exist, create it and try again.

Check whether a Request document has been created

The Request documents are named SoapOutnnnn.xml

If no such document has been created, the request has not been sent to the
service – debug the program to find out where the error occurs.

Check whether a Response document has been created

Check whether a Response document has been created

The Response documents are named Responsennnn.xml.

If the folder only contains a request document, you have created the request –
but not received the reply.

One obvious reason for this could be that the service is unavailable.

You can check whether the service is available using your browser.

If you are using Internet Explorer, you need to first Select Tools Internet

Options Advanced and uncheck the “Show friendly HTTP error messages”
option.

Enter the URL in the browser, and an XML-document stating that the request is
invalid should be shown – as shown here:

If this message is not shown and you get an error in the browser, the service is
not available. Please inform mailto:support@websydian.com about this.

Check content of the Response document

Open the response document. Check whether the response document is as you
expected.

An error document will be returned if the Request document contains invalid
XML, if the format of the Request document is not correct, or if the SOAPAction
header is missing or incorrect (or other errors occur).

mailto:support@websydian.com

 Test the function

Calling a web service 12

If this happens, you must investigate the content of the Request document to
find out if it is correct – and check the SOAPAction (remember, this is case
sensitive – try copying it from the WSDL).

