

Copyright © 2009 Websydian A/S. All rights reserved

Web Service Tutorial

Providing a web service

Revision date 14 August 2009

Table of Contents

Web Service Tutorial 1

Table of Contents

Table of Contents ... 1

Overview ... 2

Preparations ... 2

Creating a local model .. 2

Creating document definitions ... 3

Create a web service entity ... 4

Create XMLHandler .. 5

Add code to action diagram .. 6

A short explanation of the code: .. 7

Create SoapProcessor function .. 7

Create definitions for the CreateWSDL function .. 7

Create an ApplicationServiceListener ... 8

Generate and build ... 8

Library Objects .. 8

Application .. 9

Deploy the service .. 10

Step 1: Ensure that required software is installed .. 10

Step 2: Download and extract the Websydian test environment 10

Step 3: Setup the Websydian test environment ... 10

Step 4: Start the Websydian test environment ... 10

Test the function ... 11

Create test document .. 11

Use the test client to call the service ... 11

Problem solving .. 13

Generate the WSDL.. 14

 Overview

Providing a web service 2

Overview

This tutorial will show you how to develop and deploy a simple SOAP based web
service.

The tutorial will go through the following tasks:

1. Define the structure of the request and the response documents in Plex.
2. Create a function that can receive the http request from the caller, extract the

request document from the http request, call the function that will handle the
request and return the response to the caller.

3. Create a function that can handle the received request document and create
the response document.

4. Deploy the generated service.
5. Create a WSDL file, which makes it possible for external systems to call the

web service.

Preparations

Creating a local model
Before you are able to run this tutorial, you have to create a local Plex model that has
the Websydian web service pattern library (WSYSOAP) as a library model.

If you want to use an existing model, you can of course do so. Just make sure to check
the configuration of the model (see below).

Create a Plex group model that has WSYSOAP as a library model.

Create a Plex local model based on the group model.

Specify the following configuration:

Model Variant Version Level

ACTIVE Base Latest Version Latest Level

DATE Windows Client Latest Version Latest Level

FIELDS Base Latest Version Latest Level

FUNDATI Base Latest Version Latest Level

JAVAAPI Base Latest Version Latest Level

OBJECTS Base Latest Version Latest Level

SDSTRING Windows v.6.1 v.6.1

STORAGE Base Latest Version Latest Level

UIBASIC Base Latest Version Latest Level

UISTYLE Base Latest Version Latest Level

Creating document definitions

Web Service Tutorial 3

Model Variant Version Level

VALIDATE Base Latest Version Latest Level

WINAPI Base Latest Version Latest Level

WSYBASE DWA – Windows v.6.1 v.6.1

WSYDOM Windows v.6.1 v.6.1

WSYHTTP Windows v.6.1 v.6.1

WSYSOAP Base v.6.1 v.6.1

WSYXML Base v.6.1 v.6.1

Creating document definitions

When you provide a web service, you will normally be in charge of determining the
structure of the request and response document.

This means that you can‟t expect to have a schema or a WSDL file that can be
imported to define the request and response documents in Plex.

Because of this, you have to create the definitions of the documents manually in Plex.

Create the following triples to define the request and response documents:

Source object Verb Target object

Request is a ENT WSYXML/

XMLElementWithServiceFunctions

is a ENT WSYXML/NamespaceAware

Request.Fields field FLD firstName

field FLD lastName

Request.Fields.
firstName

is a FLD WSYXML/ElementField

Request.Fields.
lastName

is a FLD WSYXML/ElementField

Request has FLD Request.Fields.lastName

has FLD Request.Fields.firstName

Response is a ENT WSYXML/

XMLElementWithServiceFunctions

is a ENT WSYXML/NamespaceAware

 Create a web service entity

Providing a web service 4

Source object Verb Target object

Response.Fields field FLD greeting

Response.Fields.greeting is a FLD WSYXML/ElementField

Response has FLD Response.Fields.greeting

The Request and Response documents both scope two source code objects:
Namespace and Prefix.

The Namespace source code determines namespace of the top element of the
documents and of the scoped element fields.

The Prefix source code determines the prefix that is used as an alias for the
namespace. Specify the following literal values:

For Request.Namespace and Response.Namespace:

http://www.websydian.com/services/greet

For Request.Prefix and Response.Prefix:

p1

These definitions enables you to create and read the request and response
documents.

The definitions for the Request document define a document like this:

The definitions for the Response document define a document like this:

It is highly recommended that you always specify a namespace for the top element of
the request and the response document. The SOAP standard does not demand this,
but many tools can’t call services where the documents have no namespace.

Before you can use the functions scoped by the two entities, you need to make all the
scoped objects real.

Make all objects scoped by the Request and Response entities real.

Create a web service entity

To be able to provide a SOAP-based web service, you need a number of service
functions and definitions for the SOAP-structure that is wrapped around the request
and response documents.

Create XMLHandler

Web Service Tutorial 5

You create these by creating an entity that inherits from the abstract HttpSoap entity
found in the WSYSOAP model.

This creates all the definitions that are necessary for creating both the subscriber and
the provider role. As this tutorial only handles the provider part, the functions used to
call a web service are set to implement no.

Create the triples:

Source object Verb Target object

Publisher is a ENT WSYSOAP/HttpSoap

Publisher.Services.SoapGenerator implement SYS No

Publisher.Services.CallSoapGenerator implement SYS No

Create XMLHandler

The function that will handle the request document and write the response document
must inherit from an abstract XMLHandler.

Create the triples:

Source object Verb Target object

Publisher.Services includes FNC XMLHandlers

Publisher.Services.XMLHandlers includes FNC GreetService

Publisher.Services.XMLHandlers.

GreetService

is a FNC Publisher.Abstract.XMLHandler

is a FNC WSYDOM/DomServerExternal

implement SYS Yes

local FLD Response.Fields.greeting

Make the publisher entity and all its scoped objects real.

The function servicing the http requests (the SoapProcessor) can call a number of
different XMLHandlers, based on the http header SOAPAction that is sent as part of
the http request.

The XMLHandler scopes a source code object named SOAPAction.

When you specify a value in this source code, it instructs the SoapProcessor to call the
XMLHandler when it receives an http-request with this value for the SOAPAction
header.

Specify:

http://www.websydian.com/services/greet

In the source code:

Publisher.Services.XMLHandlers.GreetService.SOAPAction

 Create XMLHandler

Providing a web service 6

Add code to action diagram

Create a message that can format the greeting string:

Source object Verb Target object

Publisher.Services.XMLHandlers.

GreetService

message MSG response

Publisher.Services.XMLHandlers.

GreetService.response

parameter FLD Request.Fields.firstName

parameter FLD Request.Fields.lastName

Specify:

Hello, &(1:) &(2:), welcome.

For the literal value of: Publisher.Services.XMLHandlers.GreetService.response

Open the action diagram for the function:
Publisher.Services.XMLHandlers.GreetService

Add the following code (subroutine Handle Xml):

Post point XmlHandler functionality

Request.GetFirstOccurrence

Map with:

Variable Input:

 InputDocument<BodyInObjectStoreReference>

 InputDocument<BodyInDocument>

Variable Parent:

 <ParentElement.NULL>

If Environment<*Returned status> == <Returned status.*Successful>

 Request.SingleFetch

 Map with:

 Variable Input:

 InputDocument<BodyInObjectStoreReference>

 Request.GetFirstOccurrence/Output<ObjectNode>

If Environment<*Returned status> != <Returned

status.*Successful>

Set Response<FaultCode> = <FaultCode.Server>

Set Response<FaultString> = <FaultString.Server>

else

Format message Message:

Publisher.Services.XMLHandlers.response.GreetService,

Local<Response.Fields.greeting>

 Map with:

 Request.SingleFetch/Data<firstName>

 Request.SingleFetch/Data<lastName>

 Response.InsertRow

 Map with:

Create SoapProcessor function

Web Service Tutorial 7

 Variable Input:

 OutputDocument<BodyOutObjectStoreReference>

 OutputDocument<BodyOutDocument>

 OutputDocument<BodyOutDocument>

 Data:

 Local<Response.Fields.greeting>

If Environment<*Returned status> != <Returned

status.*Successful>

 Set Response<FaultCode> = <FaultCode.Server>

 Set Response<FaultString> = <FaultString.Server>

A short explanation of the code:

The GetFirstOccurrence function finds the top node in the request document.

The SingleFetch uses this position to read the information contained in this element.

At this point, you would enter your application specific functionality. To keep the tutorial
simple, the only processing is that the formatting of the received data into the answer
string for the response document.

The InsertRow call inserts the response data into the Response element in the
response document.

If the document can‟t be read (e.g. if the structure is not as expected), a FaultCode and
a FaultString is returned. The calling function uses these values to send an error
message to the caller of the web service.

Create SoapProcessor function

The SoapProcessor is the function that receives the http request and retrieves the
request document from the soap envelope that contains the request document itself.

The SoapProcessor uses “comprises” triples to determine which XMLHandlers it can
call to handle the requests.

The SoapProcessor determines which XmlHandler function to call for a particular
request by comparing the http header SOAPAction with the content of the SOAPAction
source code scoped by the XmlHandlers.

Create the following triple:

Publisher.Services.SoapProcessor
comprises
FNC

Publisher.Services.XMLHandlers.

GreetService

Create definitions for the CreateWSDL function

In almost all cases, you must generate a WSDL file for the web service to make it
possible for other applications to call it. To be able to create the WSDL, a few more
definitions are necessary.

Create the triples:

Source object Verb Target object

Publisher.Services.XMLHandlers. comprises FNC Request.CreateSchema

 Create an ApplicationServiceListener

Providing a web service 8

Source object Verb Target object

GreetService

Publisher.Services.XMLHandlers.

GreetService
comprises FNC Response.CreateSchema

Publisher.Services.SoapProcessor.

CreateWSDL
implement SYS Yes

Publisher.Services.SoapProcessor.

CreateWSDL.HandleXmlHandlers
implement SYS Yes

Create an ApplicationServiceListener

To make it possible for the web server component to communicate with the
SoapProcessor, you must create a function that inherits from the abstract
WSYSOAP/ApplicationServiceListener.

Create the triples:

Source object Verb Target object

TutorialListener is a FNC WSYBASE/ApplicationServiceListener

implement SYS Yes

impl name NME LISTTUT

file name NME LISTTUT

Open the action diagram of the TutorialListener function and add the following code:

Post Point: Call to EventDispatcher

Call Publisher.Services.SoapProcessor

Generate and build

Library Objects

Open the Generate and build settings – System definitions for the local PC.

Select “32 bit C++ build”.

Check the “Use pre-built libraries” checkbox.

Specify the following libraries:

Websyd.lib, WsydXml11.lib, WsydXml11_dll.lib

You find these three files in the Development folder of your Websydian installation
(use the ones for your Plex version).

If you are using a Plex 5.5 SP1 or earlier:

Generate and build

Web Service Tutorial 9

wininet.lib, ws2_32.lib.

These two lib files are part of the Visual Studio installation. Don‟t specify a path; the
compiler knows where to find them.

For Header Directories, specify the “include” folder found under the Development
folder of your Websydian installation.

Drag the following subject areas from the object browser to the Generate and Build
window. Generate and build all the objects in the subject areas in one build.

WSYDOM/DOMObjectsToGenerateAndBuild

SDSTRING/SDStringObjectsToGenerateAndBuild

WSYHTTP/HTTPClientObjects

WSYSOAP/SOAPObjectsToGenerateAndBuild

WSYSOAP/WSDLObjectsToGenerateAndBuild

WSYXML/SchemaObjectsToGenerateAndBuild

WSYBASE/ DWA_Win_ObjectsToGenAndBuild

Application

Generate and build:

All objects scoped by the Publisher entity.

All objects scoped by the Request entity.

All objects scoped by the Response entity.

TutorialListener.

Create an exe file for TutorialListener.

Add the following to the TutorialListener.ini file:

[TransacXML]
MAX_CONTENT_LENGTH=100000
TEMPORARY_FILES=c:\temp\SoapProcessor\

DELETE_TEMPORARY_FILES=N

Create an exe file for Publisher.Services.SoapProcessor.CreateWSDL

The MAX_CONTENT_LENGTH setting specifies the largest request document you will
accept.

The TEMPORARY_FILES setting must specify an existing folder where the
SoapProcessor can write temporary files.

DELETE_TEMPORARY_FILES=N specifies that the SoapProcessor should not delete
the temporary files when the request has been processed. This is beneficial when
developing and testing as the content of the temporary files often are useful for finding
errors.

 Deploy the service

Providing a web service 10

Deploy the service

You are now ready to do the final deployment of your Web Server in order to do so you
will need to setup the Websydian DWA environment. You do this by completing the
following steps.

Step 1: Ensure that required software is installed
Make sure that you have the SUN Java version 6 installed on your computer.

Then if you do not have Apache Tomcat version 6 installed please go to the Apache
Tomcat download site (http://tomcat.apache.org/download-60.cgi) to obtain the
installation program and install it keeping the default settings as proposed by the
installation program.

After installing Tomcat, go to the Control Panel, select Administrative Tools and then
Services. Locate the service named Apache Tomcat right click it and select Start to
start the service.

Check that Tomcat is running by opening your browser and enter the URL
http://localhost:8080. At this point, you should see the Tomcat Welcome screen.

Step 2: Download and extract the Websydian test environment
Download the file
http://www.websydian.com/wsyweb20/dwn/WindowsDWA_TestBench.zip

Then extract the content of the file to your Release directory located in the GEN
directory where your local model is located.

Step 3: Setup the Websydian test environment

1. Open the file named 'DeploySettings.cmd' located in the 'TestBench' directory
with notepad.

2. Change the value of the 'LISTENER_IMPL' name to LISTTUT (the
implementation name of your implemented ApplicationServiceListener)

3. Verify that the value of the 'TOMCAT_PATH' points to your Apache Tomcat
installation directory.

Step 4: Start the Websydian test environment

In order to start the Websydian test environment do the following:

1. Open the directory „TestBench‟ located in your GEN\Release directory

2. Run the command „Deploy.cmd‟ to deploy your application into the test
environment (Disregard the message “File not found - *.htm”)

3. Run the command „Start.cmd„ to start the test environment

Use the command „Stop.cmd‟ to stop the test environment in a controlled manner.

If you make any changes to the application (such as creating new functions, changing
existing ones or changing the content of the INI-file) you must:

1. Run the „Stop.cmd‟ to stop the application

2. Run the „Deploy.cmd‟ to deploy the changes

3. Run the „Start.cmd‟ to restart the application.

http://tomcat.apache.org/download-60.cgi
http://localhost:8080/
http://www.websydian.com/wsyweb20/dwn/WindowsDWA_TestBench.zip

Test the function

Web Service Tutorial 11

Test the function

One of the common issues when you are developing services is to test the services
you have created.

To test a service, you need to be able to make an http-request containing a valid
SOAP-document to the service. You can make such a request in several different
ways:

1. Generate the WSDL for the service (See below). Feed this WSDL to an external
tool (e.g. XMLSpy or soapUI) and let the tool generate a request.

2. Create a test program that calls a SoapGenerator that calls the service (See the
tutorial “Calling a web service”).

3. Use an http test client tool that is available at the Websydian download
application.

The tutorial will show how to use the test client, as the first option is dependent on
access to an external tool, while the second option does lead to some extra work.

You can download the tool here:

http://www.websydian.com/wsyweb20/dwn/ServiceRequestTestTool.zip

You can find the documentation for the tool here:

http://www.websydian.com/websydiandoc/v61/source/WebsydianExpress
v3.0/Tutorials/testclient.htm

Create test document
Use notepad to create a text file named TestRequest.xml - with this content:

<?xml version="1.0" encoding="utf-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

 <ws:Request xmlns:ws="http://www.websydian.com/services/greet">

<ws:firstName>John</ws:firstName>

<ws:lastName>Doe</ws:lastName>

 </ws:Request>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Use the test client to call the service

Run the AAvf.exe to start the tool.

http://www.websydian.com/wsyweb20/dwn/ServiceRequestTestTool.zip
http://www.websydian.com/websydiandoc/v61/source/WebsydianExpress%20v3.0/Tutorials/testclient.htm
http://www.websydian.com/websydiandoc/v61/source/WebsydianExpress%20v3.0/Tutorials/testclient.htm

 Test the function

Providing a web service 12

Enter/select:

Internet Server Name: localhost (The server your Tomcat is installed on)

Port: 8080 (The port your Tomcat is using)

URL: /LISTTUT

Http Version HTTP/1.1

Method: POST

Use SSL: No

Request filename: The name of the file containing the XML document

In the header table (top right corner):

Change the value for the Content-type header to “text/xml;charset=utf-8”

Enter a new header:

HeaderName: SOAPAction

HeaderValue: http://www.websydian.com/services/greet

Press Execute to test the application.

You can see the result of the test in the bottom part of the panel.

The HTTP Status specifies whether the service returns an error (200 is successful).

Test the function

Web Service Tutorial 13

The “Response” pane shows the XML document returned by the service, which should
have the following content (it will not be shown formatted in the tool):

<?xml version="1.0" encoding="utf-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Body>

<p1:Reponse xmlns:p1="http://www.websydian.com/services/greet">

<p1:greeting>Hello, John Doe, Welcome.</p1:greeting>

</p1:Reponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Problem solving

1. Check folder for temporary files.

See LISTTUT.ini for the location of the folder.

If the folder does not exist, create it and try again.

2. Check whether a Request document has been created.

The Request documents have names that start with “SoapIn”.

If there are no such documents in the temporary files folder, it indicates that
the request has never reached the service – or that the request did not
contain a document.

3. Check that the Service has been deployed on the expected URL

You can check whether the service is available on the URL using your
browser.

If you are using Internet Explorer, you need to first Select Tools Internet

Options Advanced and uncheck the “Show friendly HTTP error
messages” option.

Enter the URL in the browser. This shows an XML-document stating that
the request is invalid in the browser.

This should also write two temporary files to the temporary folder

4. Check whether a Response document has been created

If you find a request document – but no response document, the most
common reason is that an error in the XMLHandler has meant that the
InsertRow function has not been called – often that the XMLHandler has
ended in a state where the program can‟t terminate.

Debug the XMLHandler to check that it behaves as expected.

Note that you can use the Plex action diagram debugger for this.

5. If the returned XML document is a fault document

If the service returns a SOAP-fault document, it can state different things
about the error.

The most common case is that the maximum content-length has been
exceeded. This is normally an indication that you have not entered
MAX_CONTENT_LENGTH setting as specified above.

 Generate the WSDL

Providing a web service 14

Generate the WSDL

The WSDL file is not necessary for this tutorial. However, as a WSDL file is usually
necessary if other applications are going to call the service, this section of the tutorial
shows how you can create a WSDL file for the service.

Open the “Generate and Build” window and run the CreateWSDL function

Enter:

TutorialService

http://localhost:8080/LISTTUT

Where to store the WSDL file

Use the default for the target namespace

Press OK

Select the Request document

Generate the WSDL

Web Service Tutorial 15

Select the Response document

This generates two files: The WSDL file and a schema file that contains the definitions
for the request and response documents.

If you have access to XMLSpy, soapUI or another tool that can generate an http
request based on a WSDL file, you should try using the generated WSDL file for this
purpose.

